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VORTEX SYSTEMS ON SLENDER ROTATING BODIES
AND THEIR EFFECT ON THE AERODYNAMIC COEFFICIENTS

M. Fiechter
Introduction

At already minor disturbances in flight, siender rotational bodies can
attain such large amplitudes in the swing of pendulum that the infiuences
of inertia and tenacity of the air, circulating around the body, can no
longer be neglected. In the process, the currents detach themselves from
the body. At the trailing side, eddies form which allow the subpressure
and also the cross currents to become substantially larger than what the
potential theory calculations show, that is, the effects of tenacity are not
given consideration.

Experimental examinations at angles of incidence up to 90° and at
stationary, incident flow, show various eddy systems. These were
examined in the 1.2 m subsonic wind tunnel of the ISL (Fig. 1) at a flow
velocity of V,=34.2 m/s, corresponding to a Reynolds number of 110,000

in relation to the cylinder diameter.

The circular-cylindrical test bodies with various head shapes are
shown in Fig. 2. Their total length amounted to 11.7, 16.3, and 20.9
cylinder diameters. The profile of the ogivalic head shape with the head
length of LK=3Do corresponds to that of the Standard Model AGARD - B

with the local radius of .
x[, 1, x,2 1
-3 ke

The cone-shaped head had an equal length of L.=3D,. The Body Series
C consisted of straight-cut circular cylinders.

The directional-, pressure-, and velocity measurements in the area of
eddies, the painted presentations of current lines close to the wall, the
pressure distribution measurements at the surface, and the three-
component measurements with built-in strain gauge scales in the wind
tunnel, were augmented by photographs and films [1] of the eddy systems.
These show the currents of the eddies in the water tunnel of the ISL

*Numbers in the margin indicate pagination in the foreign text.



(Fig. 3) [2] at a current velocity of 4 cm/s, corresponding to a Reynolds /8
number of 400.

For angles of incidence up to 30°, a simple empirical relationship is
given for the symmetrical eddy pair, for the location as well as for the
circulation, and the beginning of the asymmetrical deflection of the eddies
is defined as the symmetry boundary. The forces acting on the body are
calculated with the help of an impulse method and the semi-empirical
cross flow theory according to A//en [3]. Measurement results by Me//o
[S] at M=2 were used for comparison.

Nomenclature

CM Coefficient of the tilting moment around the tail M = €M Pdo g L
(negative at positive angles of incidence)

CN Coefficient of the normal force N=cN Pdo SQ

D Coefficient of pressure (p-p,)/Py, = (p-Py)/ KD, M02/2)

cr Coefficient of the tangential force T=cy py, Sq

Cwq Coefficient of the resistance of a laterally inflowing, infinitely

large circular cylinder per diameter and unit of length
de=CWQ Ddo D dx

d Core diameter of the eddy

D Body diameter at any given point x

Do Greatest body diameter = diameter of the cylinder

H - Distance betWeen center of pressure and tail

Hg Distance between strongpoint of longitudinal cross-sectional

area and the tail
L Maximum body length, reference length

Lk Head length



Length of the cylindrical part
Mach number of the undisturbed flow
Cross-current Mach number =M, sin &

Local static pressure

Static pressure of the undisturbed flow

Dynamic pressure = pv2/2 = I(pM2/2

Dynamic pressure of the undisturbed flow |
Radial distance of a point normal to the body axis (x-axis),
cylinder coordinate

body radius at any given point x
cylinder radius

Reynolds number = V,d,/v

Cross-sectional area of body at any given point x
Cross-sectional area of cylinder = maximum cross-sectional area

Longitudinal cross-sectional area of body through the x-axis,
reference area = OIL Ddx

Resultant velocity
Velocity of undisturbed flow

Volume of the entire body = ,f* (1D2/4) dx

Coordinates in the body system, origin at the tip of the body

Angle of incidence, angle between body axis and the direction of
undisturbed flow

Numerical ratio of the resistance of a laterally flowing, infinitely
long circular cylinder to the resistance of an infinitely long
circular cylinder




L Meridian angle of the rotational body, cylinder coordinate, =0on /10
the inflowing side in the incident angle’s plane

K Isentropic exponent '

v Kinematic tenacity

P Density

; Strength of eddy, circulation =$vg ds

5 trical. stati \i0ining nair of eddi

At angles of incidence @5°, the currents detach themselves from the
body, thus creating at the trailing side two eddies symmetrical to the
plane of the angle of incidence and with an opposite direction of rotation.
They move in spiral fashion and stationary along the body from tip to tail,
only a small distance away from the surface. InFig. 4, one can see the
front eddy in the water current. The eddy current lines can be seen in
terms of the thin threads made by a colored fluid exiting at a slight excess
pressure from small drilled holes at the model's surface. These threads
enclose the eddies in a spiral-like manner. In an air current, the pair of
eddies moves in a similar way. The symmetry of the eddies is confirmed
by the pressure distribution curves for 3<30° in Fig. 14 and by the pictures
of the currents close to the wall in Fig. 15 and 16.

The field of eddies of the body with L=16.3 D, total length and a

cone-shaped head was examined in the wind tunnel at the cylindrical
portion of the body with an ISL-vector probe [4], a hot wire anemometer, a
filament anemometer, and a Pitot tube. These measurements show that up
to 4<30°, the eddies move in lines stationary along the body at velocities
of V, cos a V. Corresponding to the measuring results in Fig. 5, the radial

distance r of the eddy centers from the body axis grows with

(1) r=(0.119 £ 0.006) x |al R,




proportional to the distance from the tip of the body x and to the angle of /11
incidence & The eddies apparently have their origin in the normal plane

X=0, one cylinder radius away from the tip of the body. The entered values

for M=2 from [S] in this Fig. 5 calls attention to the fact that there is a

similar interrelationship with r 0.15x [al R, .

For all angles of incidence up to 30° and in all cross-sectional planes,
the measurement points for all subsonic as well as supersonic velocities
lie, according to [S], in about the same meridian planes which enclose an
angle of about 46° between them (Fig. 6). The ratio of eddy distance y
from the plane of the angle of incidence to the radia! distance r is

(2} y/r =sin® =0.39 + 0.03 = const.

For the determination of the circulation, the median diameters of the
eddy centers were measured with

(3] d=(0.14+0.03) x |al

which increase similar to the radial distance r with the distance x from
the tip of the body and the angle of incidence &.

In the cross-sectional planes, the eddy centers rotate normal to their
axis with about constant angular velocity. According to presently
available measurements, one can accept as median value of the peripheral
velocity

(4) Vo sind =V, &= const.

at the boundaries of the eddy centers for all cross sections x and for all
angles of incidence a, with a median error of about 20%. With this
simplification, {3} and {4) become the circulation

(5) T = dmv, 18l = 0.14 1V, x42,



which as circulation coefficient per 42 : | / (Do TV, 52) = 0.14x/Dy in /12

Fig.7 allows the detection of a relatively small deviation from the
measuring points for M=0.1. For M = 2, the coefficient becomes
IP'1 7 (D, MV, 42) = 0.25%/D,

The sum of all normal forces dN/dx in the individual cross sections
which are formed by the tenacity influences of the current up to location x
on the body, is proportional to the impulse Ix of the eddies and their

mirror eddies with circulation K x In the cross-sectional plane at location
" X (see also Bryson [6] and Melle [S)).

With the identity t = x/V0 cos a=~ x/V0 and from dl/dt = dN/dx, the
impulse in cross section x

t x
dNy dNy dx Ny
(6) Ie® J qxdt" I ™ VTV T ef20myy)
o o

becomes equal to the impulse of the eddies in cross section x.
According to the law of reciprocal radii: ri/R, = R,/r (Fig. 9B), (2}

becomes the difference of distances y-y; = 0.39 R, (r/R,, - Ry/r) and thus
from {6) for x=L, the entire normal force becomes

(7) Ny = 0.109mD Py, L4 18l (r/R-Ry/r)

By using (1], one can see that Ny~ x2 &3+ x4 131 - . If to these
tenacity forces Ny, the potential forces Np are added at the head of the
body, then the normal force coefficient

{8] CN = CNP + CNV = (SO/SQ) 23+ NV/SQ de

follows with 5, = 11D02/4 and 5, the longitudinal cross-sectional area.
In Fig. 8, the cyy-curve, calculated according to (8} for the body having a
total length of L = 16.3 D, and the cone-shaped head, was plotted against

the angle of incidence. The curve agrees well with the measuring points of
the force readings for the body with the cone-shaped and the ogivalic head. /13



The curve according to {16} with cyy, = ey 18l gives somewhat larger

values. The measured values according to [S] for M=2 gives almost double
the amounts, since the circulation (see above) of the eddies and also the
pressure on the inflowing side is greater than in the subsonic region.

Symmetry Boundaries

with larger angles of incidence and increased body lengths, the eddy
pair becomes asymmetrical and one of the two eddies is eventually pushed
away from the body. Both eddies retain their stationary character, as can

be seen in water currents in Fig. 10. As soon as the eddies have reached
the radial distance

{9} r#2R0=rG,

then one can notice pronounced asymmetrical behavior in the
measurements of the eddy centers at all angles of incidence. From {9}
together with {1}, one obtains

(10 Il xg = 8.4R,

in rough approximation the symmetry boundaries for the eddy movement.
Below the boundary curve according to {10} inFig.11, the eddies are

symmetrical, and above it they are asymmetrical. Up to the symmetry

boundary, the center diameters

do not become greater than, say, the body radius. One of the two eddies is

then more strongly shaped into an oval than the other.

Aside from that, the eddies at the symmetry boundary on their way in
the meridian planes reach the curve

=D 2/r = ; -
(12} r-rj=r-Ry“/r=2rsin® =2y,



which is entered as a dashed curve in Fig. 9B. This curve shows, according /14
to FOPPL [7] (see also [6), [8], [9]), the stable locations of the

symmetrical eddy pair behind laterally inflowing currents to the circular
cylinders in potential currents. Along with (9} one obtains at the

symmetry boundary from (12}

(13} sin® = 0.375 = sin 22°

about the same coordinate as the one from measurements in {2} : 23°
which roughly confirms the geometrical requirements of the symmetry
boundary according to [10}. The physical requirements, which lead to the
introduction of the deflection process, are similar to the requirements
which are described by LUDPW/EG [10) and AUMPEL [11] for the bursting
process of tenacious eddy centers over delta wings. For rotational bodies,
however, these eddies are closer to the body surface and closer to one
another-.

trical Deflection of Stati Eadi

Up to the symmetry boundary, the distance of the eddies from the
surface of the body is small enough so that the rotational energy of the
eddies still succeeds in guiding the outer currents around the eddies.
Beyond the symmetry boundary with [al x > 8R,, (Equation {10}), the

distance of the eddies becomes so great, however, that the outer currents
penetrate into the space between eddy and body surface, thus deflecting
the eddy from the body. The fanned color threads in Fig. 10 clearly show
this process. The deflected eddy departs from the body with a pronounced
change in direction. Under the deflected eddy, a little down-stream, a new
eddy is formed. This eddy remains close to the body for a while and
further downstream it, too, becomes deflected. With an increase in the
angle of incidence, the point of deflection moves up-stream. In the spaces
on the other side of the body, the other eddy is also deflected, and
down-stream a new eddy is formed as can be seen in Fig. 12.

10
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Pressure distribution at & = 50" in Fig. 14 and the interface picture in
Fig. 15 show these asymmetries. The large, bright spots mark the
locations of deflection and renewed formation of eddies. InFig. 16, the
distances between left and right alternating locations of deflection
become smaller with an increase in the angle of incidence.

Unlike on the delta wing, the eddies on the rotational body have the
chance to escape sideways to the outside as soon as they get too much in
each others’ way. The deflected eddy system remains stationary up to an
angle of incidence of about 60°. On the delta wing, depending on the wing
span chord, the area down-stream from the shattered eddies becomes
instationary at angles of incidence from 25° to 35°.

At a small interface disturbance, i.e. from a trip wire, the stationary
eddies become asymmetrical without being deflected at aiready very small
angles of incidence (2>8°). This causes stabilizing tail fins to rotate the
flight body around its longitudinal axis, as was shown in the film [12].

These three-dimensional stationary eddy systems which develop and
become deflected above and next to one another, are comparable to the
two-dimensional instationary eddies which, alternating left and right,
form and become deflected at the lateral inflow to the circular cylinders.

nstati Eddy S ’

At angles of incidence of about 60°, the instationary separation
begins (Fig. 13) and can be recognized by the separating rows of eddies as
they leave the body in equal time intervals ( AARMANS eddy street). The
pressure equalization beginning at the tail, causes the instationary
separation area to spread toward the tip of the body with a further
increasing angle of incidence until finally, at an angle of incidence of 90°
(Fig. 17), the entire cylindrical part of the body is involved.

‘\
=
N
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Only at the head, a stationary , asymmetrically deflected eddy pair is
retained.

The subpressure peaks in the curves of pressure distribution inFig.14
have disappeared since the too sluggishly registering instruments have
only given time-related median values. The interface pictures inFig. 15
and 16 at a = 70°, 80°, and 90" are correspondingly equally gray between
the bright stripes at the separation lines of the interface.

Cross Flow Theory

The stationary eddy currents and -deflection up to an angle of
incidence of 60° permit the pick-up of the cross currents nearly
two-dimensionally in each plane normal to the body axis. Thus each given
cross-sectional plane receives the same incoming cross current velocity
V, sin a. According to ALLEN's semi-empirical cross flow theory (cross

flow theory [3], [13], [14]), the potential forces at the head of the body
[15], [16], which change with sin 23, receive additional forces for the
entire body. These grow with sin? 4 and correspond to the forces at the
laterally inflowing currents to the circular cylinder with instationary
eddy separation. The schematic distribution of normal forces over the
axis of the body is presented inFig. 18.

The integrated pressure distribution curves for each single cross
section of the body (i.e. Fig.14) are delivered by the distribution of the
normal force plotted over the body axis inFig. 19 and 20.

According to the cross flow theory, the distribution of the normal
force per unit of length is

(14)  dN/dx = (dS/dx)py,sin 24 + DRCyqPy, Sin a 1l

The first term corresponds to the value from the liniarized potential
theory with the cross-sectional area S = nD2/4 for any given point of the
body. dS/dx means that potential forces only there, where the cross

12



section of the body changes in the x-direction: for the examined bodies /17
this happened only at the head. Inthe second term, the tenacity-dependent
normal force changes with the local diameter D and with the impact

pressure of the cross flow velocity py,sind 4.

The resistance coefficient per diameter and unit of length Cywq of 2

laterally inflowing current against an infinitely long circular cylinder is
assumed as being constant for the entire body. It corresponds with good
approximation to measurements according to GOWEN and PERKINS [17]
for a cylinder of 60 diameters in length (Fig. 21). For M = 0.1, cyyn=1.20.

For other velocities, the cross-flow Mach number M,sin & and the
cross-flow Reynolds number Rosiné must not be ignored.

Finitely long circular cylinders reduce their cross-flow resistance by
equalization of pressure at the cylinder tails. At subcritical Reynolds-
and Mach numbers, according to Fig. 22, the length influence factor

/c"Qal 0,62 + O,OOGL/D0
'

ne=
(15) ct‘(a-90‘)

for L/Do >9

changes about proportionally to the cylinder length L and was determined
from the ratio of the resistance of an infinitely long circular cylinder at
cross flow Cyc3-gg-) to that of the infinitely long circular cylinder cyq

[3). The measurements also show that a laterally inflowing current
against a finitely long circular cylinder with a head has about the same
resistance as a replacement cylinder of equal longitudinal cross-sectional
area and equal total length.

The measured values showing the distribution of the normal force at
the cone-shaped head, are shown in Fig. 23A for a = 30° and also for
smaller angles of incidence, a little under the dashed line which was
calculated according to Equation (14}, For &= 50" in Fig. 23B and also for
angles of incidence between 30" and 60°, the measured values at the head

13



coincide pretty well with the solid line according to Equation {14} with /18
the factorn = 1. At the cylindrical part of the body, the measured values
scatter around the solid lines withm = 1 at all angles of incidence up to

60°. This leads to the conclusion that the adjoining as well as the

deflected stationary eddies induce normal forces which grow essentially
proportional to the cross flow impact pressure and correspond to the

normal forces at the infinitely long, laterally inflowing currents at the

circular cylinder with instationary separation of the eddies (n = 1)

At the leading edge of the cylindrical part, the pressure distribution
related to the cross flow impact pressure (Fig. 14) changes only very little
over the whole field of angles of incidence and approximately corresponds
to the pressure distribution at potential flow Cp = 1-4 sinze. At the

trailing edge, the median value at instationary separation of eddies
- . Ve
corresponds to the pressure coefficient cp/sm a=0.8.

At angles of incidence of between 60° and 90°, the measured values
drop with an increase in the instationary separation of eddies to the
calculated values with the factorn. Only at the head are the measured
values at 90° inFig. 23C a little larger in relation to the stationary eddies
at the head.

When Equation {14} is integrated over the entire body length L, then
one obtains the normal force coefficient

cN-——N——--s—° sin2a + nc, . sinajal
(16) PaoSq Sq e ’

which is referenced here to the longitudinal cross-sectional area.

The moment coefficient with the tail of the body as point of
reference

M Vol, Hq
171 ey = - sin2a + nc,.sinala|
(17} ey PaoSqr Sl T "®wq

was also referenced to the longitudinal cross-sectional area 5p and to the
total length of the body. /19

14



in the first term, the abbreviation "Vol." refers to the entire body volume,
and in the second term, "Hy" refers to the distance of the longitudinal

cross-sectional area's strong point from the tail.

From cp/c) one obtains the distance of the center of pressure from

the tail H/L. For 4-» O°, the center of pressure moves, under neglect of
the quadratic second terms from (16} and {17}, into the volume strong
point of the head Hy/L = Vol./5,L.

With head length LK the head shapes become

CONE OGIVE
Ly 2/3 Lk 7/15 Distance of center of pressure from the tip,
LDy 72 LkDy 2/3  Longitudinal cross-sectional area of head,
LSy /3 LS, 8/15  Volume of head.

The values presented with the ogivalic head-forms for parabola
profiles deviate from that for circular arc tangents by less than 1% when
L 2 3D,

K 0

At CM/CN for @ = 90°, the linear first terms disappear from Equations

{(16] and (17], and the center of pressure is located in the strong point of
the longitudinal cross-sectional area Hp/L.

The following figures show a summary of the results from
3-component measurements as well as the pressure distribution
measurements for all examined bodies. With the exception of the
tangential force measurements, they differ only very little from one
another, since all values were referenced to the longitudinal
cross-sectional area. The theoretical curves were only entered for bodies
of a length of 16.3 diameters. Asmentioned before for the normal force
curves of pressure distribution inFig. 23, it is also the case here that, for
bodies with a cone-shaped head in Fig. 24, the measured values for angles
of incidence up to 30° lie closer to the dashed lines, calculated with the
factorm. Between 30° and 60° they lie a little above the solid line with /20

15



n =1, and from 60° to 90° they again approach the values with factorn.
The constant crossing from ogivalic head to the cylindrical part
diminishes these differences in all sectors of angles of incidence (Fig. 25)
(see also [14]). Since the straight-cut cylinders in Fig. 26 show the same
results for all measured lengths as the cylinders with heads, one may
conclude from this that the eddy formation starts in a similar way at all
bodies. The plotted curves were taken from the calculations from the
cylinder with the ogivalic head.

The coefficients of the tangential force ¢y inFig. 27, measured as a

function of the angle of incidence, were also referenced to the longitudinal
cross-sectional area. The steep rise in the curves up to an angle of
incidence of about 20° is, on the one hand, due to the growing share of the
pressure, meaning the form resistance of the head and, on the other hand,
due to the increasing subpressure at the tail. The form resistance, here
meaning the form tangential force, should decrease with the impact
pressure of the velocity components in the direction of the body axis
(p/2)V02c092é :

(18] c= cToc052 a,

corresponding to the plotted dotted lines. For the bodies with the ogivalic
head in Fig. 27A the measured values are up to 60% larger, with the
cone-shaped head in Fig. 27B they are up to 40% larger, and with the
straight-cut circular cylinder in Fig. 27C they are up to 80% larger than
those according to {18). Because of the strong holdover influence on the
circular flow around the tail at 1arge angles of incidence, the faulty
measured curves were replaced by the assumed curves (dashes curves).

To assume the direction of the potential forces to be in the middle

between the normal to the body axis and the normal to the wind direction,
as reasoned by the theoretical considerations by W44, doesn't seem to

16




be applicable here, since negative tangential forces, meaning the forces /21
against the direction of flow, wouid be the result. For the same reason,
tenacity forces as well as the potential forces were assumed as being
perpendicular to the body axis in Equations (16} and [17).

Closing Remarks

On the examined rotational bodies, a symmetrical eddy pair moves, at
stationary incoming flow with subcritical Mach- and Reynoids numbers,
stationary from head to tail along the trailing side of the body, as soon as
the angle of incidence becomes greater than about 5°. Upon reaching the
symmetry boundary which is dependent on the angle of incidence as well
as the length of the body, the eddies become asymmetrical and are pushed
off the body but at that, remain stationary up to angles of incidence of
60°. The symmetrically adjoining as well as the asymmetrically deflected
stationary eddies induced normal forces which, according to ALLEN ,
depend on the impact pressure of the cross flow components, meaning
increase with the square of the angle of incidence. By means of the
measuring results, the dependency of the eddy impulses on the body was
proven from the third power of the angie of incidence. The greater forces
at the head were reproduced by the linearized potential theory.

With these experimental investigations, the intention was to describe
the still relatively unknown flow behavior at slender rotation-
symmetrical flight bodies at larger angles of incidence in order to better
understand the still largely obscure stability- and steering problems [20],
[21]. It is possible, for example, that slender flight bodies with
stabilizing fins, on leaving the starting ramp, at a vertical take-off with
ground wind, at the propellant cutoff of the rocket booster, at controlled
turns etc., can experience angles of incidence which are substantially
greater than 5°.

17




The similarity of eddy formation in slow water currents, /22
subsonic-, supersonic-, and also hypersonic currents (see i.e[19)), is
understandable because the interaction of pressure-, inertia-, and tenacity
forces forms the flowing medium into eddies. Since eddies move in a
stationary way along the incoming flow slanted toward the body, one is
justified to look upon these eddies in the cross-sectional planes normal to
the body axis as plane eddies. From this follows that the flow of eddies
and their effect on the body itself and also on its controls depend on the
impact pressure of the flow components lateral to the body axis
V=V,sina or Mg=M,sina and on the Reynolds number Ry, = Rysina. The

influence of compressibility, of the local pressure surges, of the impact
wave on the eddies depends also on these conditions. CURRY and REED,
for example, at hypersonic velocities noticed eddies which were
asymmetrically deflected at minor disturbances. The lateral force which,
therefore, is no longer located in the resultant angle of incidence plane,
can increase the oscillating angle so much that the flight body axis cannot
be returned into the flight track tangent. In addition, the asymmetrical
field of eddies causes roll moments at the controis and possibly
autorotation, as the fiim [12] shows it. These catastrophic flight
situations (catastrophic yaw and roll-lock-in) cannot be explained,
according to A/COLA/DES [23] and [22], by the the well-known coupling
phenomena of rotation- and pendulum frequency, so that it is close at hand
to see asymmetrical eddies as the cause for this.
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ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 1

Measuring track of the 1.2 m - wind tunnel (Type PRANDTL) with
model body, vector probe on sliding device
and plotting instruments
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Fig. 3

Water channel
with gravity drive
(Type WERLE).

Cross section of measuring track 25 cm x 25cm,
continuous current up to 10 cm/s velocity
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Eig. 4

Eddy current lines in water channel, current from left to right,
angle of incidence 25°
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r'IR° -1

Eig. S

Radial distance r of the eddy centers per angle of incidence a
as a function of the distance frorn the body tip x according to
Equation (1]}

Angles of incidence 1s* ®, 20°8 , 24° & ISL M=0,1
16° O, 20°0 , 24° A MELLO [S] M=2
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Eig. ©

Position of eddy centers in the various cross-sectional planes
at angles of incidence 15° (A), 20" (B), 24" (C),
symbols same as Fig. 5

Meridian plane according to Equation (2}
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Circulation coefficient per 52 as a function of the distance x
from the body tip according to Equation (S}
Symbols same as in Fig. 5

16
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0° "~ q0° 20°

Fig. 8

Normal force coefficient as a function of the
angle of incidence

———— Equation (8]

— — — Equation (16}

— — CNp = 2550/50
o L=16.3D, ogivalic head M=0.1
@ L=163D, cone-shaped head M =0.1
Q L=132D, cone-shaped head M= 2

acc. to [S]
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Fig. 9

Schematic representation of eddies

(A) sideview
(B) cross section at the symmetry boundary

----- FOPPL curve according to Equation (12}

————— radial distance according to Equation {1}

— — — meridian planes according to Equation (2} 30
® symmetry boundary according to Equation {10}
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Eig. 10

Eddy defiection in water channel, angle of incidence 48°
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Fig 11

Symmetry boundary according to Equation (10}
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Fig 12

Stationary, asymmetrical eddy systems in water channel
angle of incidence 48°
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Fig 13

Stationary and instationary eddies in water channel,
angle of incidence 60°
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Current lines close to wall at cylindrical part of body, like Fig. 14
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Instationary eddies in water channel, angie of incidence 90°
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f dN .
y P ~ stoc
dN "
dx
‘ dN
v ~ sinzoc
dx
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L
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oL
V, cos o¢
Fig 18

Schernatic representation of normai force distribution
dN/dx above the body axis



Fig 19

Normal force distribution for body with cone-shaped head
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Fig. 20

Normal force distribution for body with ogivalic head
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EIQ s

Length influence factorny as a function of cylinder length at subcritical
Mach- and Reynolds numbers according to [17]
Equation {15]
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Fig 23

Experimental and theoretical normal force distribution above the body axis
for the body with the cone-shaped head, for angles of incidence 30° (A),
50° (B), 90° (C)
_____ Equation (14}
Equation [14] withm = |
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i 0 0° 30° 60° 30°
o
E.lsl ":4'

Experimental and theoretical values for body with cone-shaped head,
(A) normal force coefficients
(B) coefficients of moments around the tail
(C) distance of center of pressure from tail
_____ Equations {16} (17)
Equations {16} (17} withn =1
force rneasurements with the body lengths L/D =117 o
163 0
209 A
from the pressure distribution measurements 150 + 47
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Same as Fig. 24, but for body with ogivalic head 48



Like Fig. 24, but for a straight-cut circular cylinder,
graphs from Fig 25, symbels like Fig. 24, but addL/D, =64 ¥

3
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Targential force coefficients for circular cylinder

(A) with ogivalic head
(B) with cone-shaped head
(C) straight-cut
rmeasured
______ presumned pafh of graph
.............................. ¢r = C1q cost a,Equation (18}
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